APPROXIMATE SOLUTIONS FOR CONTINUOUS-TIME QUADRATIC FRACTIONAL PROGRAMMING PROBLEMS
نویسندگان
چکیده
منابع مشابه
An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...
متن کاملAlgorithms for Quadratic Fractional Programming Problems
Consider the nonlinear fractional programming problem max{f(x)lg(x)lxES}, where g(x»O for all XES. Jagannathan and Dinkelbach have shown that the maximum of this problem is equal to ~O if and only if max{f(x)-~g(x) IXES} is 0 for ~=~O. 1 t t Based on this result, we treat here a special case: f(x)=Zx Cx+r x+s, g(X)=~ xtDX+ptX+q and S is a polyhedron, where C is negative definite and D is positi...
متن کاملA NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کاملApproximate Solutions of Continuous Dispersion Problems
The problem of positioning p points so as to maximize the minimum distance between them has been studied in both location theory (as the continuous p-dispersion problem) and the design of computer experiments (as the maximin distance design problem). This problem can be formulated as a nonlinear program, either exactly or approximately. We consider formulations of both types and demonstrate tha...
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2014
ISSN: 1027-5487
DOI: 10.11650/tjm.18.2014.4459